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A solution of the problem of optimal stabilization (in a specific sense) of the rota- 
tional motion of a gyrostat (a solid with two flywheels) in a central Newtonian 

force field is given within the framework of analytical control theory [ 11. 

1. Inftirl equation8 of motion, Formulation of the problem. 
Retaining the notation used earlier @J. let us consider a solid along two of whose princi- 

pal axes of inertia are located the axes of rotation of homogeneo~ symmetric flywheels, 
set in motion by special motors. The gyrostat is in a central Newtonian force field (0, 
is the attracting center, and 0 is the center of mass of the gyrostat). 

Shown in Fig, 1 are the following coordinate systems : 0,X,X2X, - the inertial sys- 

tem, 0~~58_2~ - rigidly coupled to the gyrostat and directed along its principal axes of 
inertia ( OS, and Ox, are the axes of flywheel rotation), 0xi’x2’ x3’ - semi-mobile 
(the Ox,’ axis coincides with the Ox, axis, while the OX,‘, Ox,’ axes do not take 
part in gyrostat rotation around the Oxs axis). Let us introduce the notation: C,,C,, 

Cs are the gyrostat moments of inertia relative to the Ox,x,xs axes, respectively, 
JI, J, are the axial moments of flywheel inertia (for a symmetric gyrostat CI == 
C, == C. J1 ---= J, == J); 41, q2, q3 are the projections of the instantaneous angular 
velocity of the trihedral 0x1fz2’x3f on these axes, pik are the direction cosines of the 
angles between the 0,X1X,X, and OX~‘Z~‘J~~ axes, h,, h,, h, are projections of 
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the gyrostat kinetic moment vector relative to the center 0, on the 0,X,X,X, axis, 
ul, u2 are the control moments around the flywheel axes 0x1, Ox, produced by the 
motors, M is the gyrostat mass, X1, X,, X3 are coordinates of the center of gyrostat 

mass in the OIXIX,X, system, U is the gravitational force function of the form for 

a symmetric gyrostat [2, 31 (x is the gravitational constant) 

(A = 1/x,2 f x,2 f X,2) 
The stationary mode being studied is mo- 

tion of regular precession type : the gyrostat 

center of mass 0 moves in the X10,X, 
plane along a circular orbit of radius R, at 
the constant angular velocity a’ = ol; the 

gyrostat moves uniformly with the relative 
angular velocity cp’ = CO around the axis of 

\’ 
XI 

symmetry Ox, directed perpendicularly to 

Fig. 1 the plane of the orbit ; the control motors 
are hence disconnected. and the flywheels do 

not rotate with respect to the body. 

The equations of gyrostat motion can be represented as [Z] 

(1.2) 

Here WI, w2 denote new control moments relative to the OX;, Ox,' axes, Li are 
the projections of the kinetic moment of the center of mass, and Al,,., iv,<. are the 
moments of the gravitational forces on the basis of (1.1) 

w1 = u.~ cos q1 - up sin vI, u1* = u1 sin v1 + u2 cos ‘cl (1.3) 

(cpl’ = cp’ + @‘P33) 

LI = M(X2X3' -X,.X,) (1 2 3) 

(1.4) 
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The mode being studied is determined by a particular solution of the equations of 

motion (1.2) 
xr = R, cos art, X, = R, sin o,t, x, = 0 (1.5) 

Cpl’ = or +. w ::: o* > qi -0, fiik =: 1:; ;,; 

w* zzz w2 z 0, hl” --: h,O = 0, fl,’ = MX,2w, + h” (h” == f-2,0*) 

Let us consider the problem of stabilizing the motion (1.5) in a limited formulation, 
i.e. without taking account of perturbations in the coordinates of the gyrostat center of 

mass X1, X2, X3. Assuming the motion (1.5) to be unperturbed, let the perturbed mo- 
tion be denoted by 

!?lv q2, Q? + 43; 1 + Pik (i = k), Pik (i # k) 

uflt w,; h*, h,, h” + h, 

(here q3 denotes the total perturbation in the absolute angular velocity p3 --I= q3 -1 T'~). 

Then on the basis of (1.2), (1.4) we obtain the following perturbed motion equations 

corresponding to (1.5) : 

(C - J) ul = - w1 i_ o*h,, (C-J) u2 = - w2 - o*h.l 

Bil = q&2 - q2pi3 (i = 1, 2,s) (1 2 9, 

3"A. c3-c 

V= ‘)N03 c--J 

It has been established earlier [2] that the controls VI, V2, v3 in the presence ofthree 
flyweels can be selected in such a way as to assure asymptotic stability of motion (1.5) 
in all the phase coordinates of the main body qi, pi k (i, k .- = 1, 2, 3) and the mini- 

mum of some functional of integral type. It is shown below that an analogous problem 
in part of the coordinates qi, (3ik has a solution in the presenee of just two controls 

01, v.2. 

2. Solution of the ctobilfsrtfon ptobl6rn. Let us seek the controls ~1, 
us which solve the formulated problem as the sum of two components 

Vj= Vj* + vi** (;=1,2) (2.1) 

where the additional controls uj** are defined in advance by setting 

Vl 
** hl,q, - (a" -I- 431 ~~,A, A- h2P22) 

(2.'21 _ _ 
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I&** = h,,q, + ( co* + 43) wL + hl2B21) 
The controls (2.2) contain only second and third order infinitesimals in fJjk7 hj (i, k = 

1, 2), q3. By virtue of (2. l), (2.2) the perturbed motion equations (1.6) become : 

q: = - (6 + 1) o*q2 + 6 0*~f332 + f113v sin 2o,t + (2.3) 

2fJ,,v sin201t + VI* + Qt 

q2 * = (6 + 1) o*q1 - ao*2p,, - 2p13v cos2w,t - 

B23Y sin 2W + u2* + Q2 

43. = Qs (6 = C&C - .I)) 
Here Qi are second and third order terms in qi, fjikr hi( i, k = 1, 2, 3) which are 
not written down. The functions Q1, Q2, Q, vanish for q1 = q2 = 0, 813 = p23 -: 

P31 = I332 = 0. 

We pose the following problem : determine the controls vr*, v2* so that the zero 

solution of (2.3), (1.7) 
qi = 0, Pik = 0 (i. k = 1, 2, 3) (2.4) 

would be asymptotically stable in the variables qj, Pjsr psj (j = 1, 2) and the con- 
dition of minimum of the functional 

(2.5) 

would hence be satisfied. Here Q is a positive-definite function in qj, pja, Ssj (j = 
1, 2) which will be found during the solution of the problem on the basis of the Krasov- 

skii and Rumiantsev theorems on optimal stabilization of controlled motions [l, 41. 
We construct the optimal control and the function Q in two steps [2]. First we con- 

sider the “shortened” system of perturbed motion equations, and we then generalize the 

results obtained to the case of the full equations (2.3), (1.7). The shortened system of 
equations in the stabilized variables Qj, fljs, psj (j = 1, 2) is 

. 
Yl 1 - (6 + 1) a*Q2 + 60*2p,2 + (j132'sin 2o,t + (2.6) 

2fi,3vsin2 olt + vl* 

92 . = (6 + l)w*q, - aw*2p,, - 2p*3Y Cos2colt - 

/323v oin 2qt + v2* 

P13. = 429 P23. = - q17 P3< = - q2, p32’ = q1 

P33. = q2P31 - 411332 

As Liapunov function we assume 

2V = k, i ;ji32 + h-2 i p3i2 + i ‘mjqj2 + 
i=l i=l I=1 

2q1 ,$l (aj3Pj3 + a3jP3j) + 2q2 i (43/jj3 + b3jP3j) 
j=l 1-l 

The integrand of the functional (2.5) being minimized we take in the form 

(2.7) 
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‘1 z i ejkqjqk i- jj njl:j”” + lf’($l,, p23, p31, $32, t) CL 8) 
.i, k=l i=l 

The kj, mj, nj (j -; 1, 2) in the functions (2.7), (2.8) are initial positive parameters 
in terms of which all the remaining coefficients (including the coefficients of the un- 

known quadratic form F) are expressed ; some of the coefficients uih, bib, eili can 
be periodic functions. 

According to the Krasovskii theorem on optimal stabilization [l] 

1 al’ Laj* _: -- __ 
Slj i3qj (I’= 1, ‘) 

we obtain a partial differential equation for the function V 

(2.9) 

ar. 1 at’ ‘2 1 / aI’ 2 ar- 
_--_ - 
at I j 4711 A71 - G ‘:L& ‘i 

++-(8+l)~~*!72-: 

Substituting (2.9) into (2.10) and extracting coefficients of identical second order terms 

in qk@ja, qkPzj(j, k = 1, 2), we obtain a system of linear differential equations in 

aja? tja, a,j,bsj (j = 1,2).Assuming k, :.: k, mj = m, nj = IL (j : 1, 2) for 
simplicity, we obtain the particular solutrons 

a 31 ; ba2 ~7 p (6 t 1) o* (2k -+ m6u**) (d = m / n) (2.11) 

a32 = - b 31 ~- pd (2k + m6u*2 ) (1~ = id? -; (6 _i- 1)2w*2]-‘) 

Uj3 = aj3 * + Kj3COS 2~0,t + Lj,siIl 2 w,t 
Cj = 1, 3) (2.12) 

bja -= bja* + MjacoS 2~rt + Nj3sin 2 art 

a13* = b,,* = -p (6 +- 1) o*mv, a23 * z= -_b * - 13 - pdmv 

K13 = N1, -= L,, = -AI,, = p.,mv (20, [d2 -+- bw,* _ (6 4 

1) co*21 - (6 -t 1) W* [# - 40,2 -;- (6 _j. g)2W*‘]} 

Al,, == --L,, == K,, =-~ II’?, = -P,dmv Id’ -f 4 GI1? + (6 + 

1) CUING + 4 (6 -1. 1) O* (1),] 

Here 

(2. ,13) 
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Furthermore, we find 

ell = d2n + a23 - a3?, 

2e12 = --al3 + b2, 

e22 = d2n - b,, + b,, 

i (bj3pj3 f b3jP3j) 

2 

(6W7332 + p13v sin 2to,t + 

2 

2$,v sin’ ~,t) + 2 (bjJ$3 + b&3j) (60*‘p~~ f 
j,l 1 

.Zf&,v co9 o,t + p2,v sin 2w,t) 

(2.15) 

To establish the sign of the function (2.15) let us pass from the dependent variables pik 
to the independent variables, the Krylov angles 8, $ l-51, by taking 0,X, and Ox, as 

the main axeS (ji3 = $ + . . ., fJ31 = -‘I) _+ . . . , pz3 = -4 + . . . , (2.16) 

p3*=e+... 

The dots denote higher order terms than the first. Considering d sufficiently large, 

and introducing the small parameter E = 1 / d, let us limit ourselves to the principal 
first order terms in the found solutions (2.11)-(2.13) i.e. , 

al3 = emvsin 2o,t + . . ., b13 = -Emv (1 f COS xo,t) + . . . (2.17) 

a32 = E (2k -f m6w*2) j- . . ., b,, = --E (2/c + m6co*2) + . . . 

a23 = Emv (1 - cos 2qt) + . . ., b,, = --Emv sin 2o,t + . . . 

Eiy virtue of (2.16), (2.17). the function (2.15) becomes 

F(8, 9, t) = gn (2/c + m60**)(2k - m60**)(82 + q2) + (2.18) 

2&mv(h*’ - v)($ cos o,t - 0 sin tolt)2 + c2F*(8, 9, t) + . . . 

Here F* (0, I@, t) is a quadratic form in the variables 8, 9 with periodic coefficients. 
Taking account of the smallness of v from (1.8), the function (2.18) is positive-definite 
under the conditions 6 Wan < 2kfm,v > 0 or 

60*~ < 2klm, c3> c (2.19) 

which agrees with results obtained earlier [Z]. It is easy to verify that the function v 
in (2.7) admits an infinitesimal high limit in the variables Qj, 813, psj (j = 1, 2) 
because of (2.17). 

3y virtue of (2.7) (2.9) the optimal control is written as 

- VI* = dq* + & .% (a&3 $ a3jik) , 

(2.20) 

3=1 
- II~* = dg, + -& ,i (bjspj3 + b3j[j3j) 

3=1 

(2.14) 



590 V.V.ICrementulo 

On the basis of (1.3), (X.8) (2. I), (2. Z), (2.20). we arrive at the following initial control: 

ur = wlcos o*t + wssin @*I, ua = -w,siri o*t + wscos o*t (2.21) 

Thus, the control (2.21) (2. II), (2.12) found assures optimal stabilization (in the sense 
of the minimum (2.5), (2.8)) of the motion (2.4) in the phase coordinates gj, pj3, fij3 

(j = 1, 2) because of the approximate system of perturbed motion equations (2.6). 
Let us note that due to (2.16), from the stabilizability of the motion (2.4) in g,s, B3j 

(j = 1, 2) results the stabilizability of this motion in all the pi h (i, i% _- I, 2, 3). 
It is easy to establish that the Liapunov function (2.7) hence the control (2.21). solves 

the problem of optimal stabilization of the motion (2.4) by virtue of the complete per- 

turbed motion equations (2.3), (1.7) if the integrand 52 in (2.5) is taken in the form 

62 --- n, -t_ 62, (2.22) 

Here Q, is the positive-definite function (2.8) in the variables qj, @jst @sj 
(j = 1, 2) and Q, denotes the terms of the third and the fourth order of smallness 

(2.23) 

The conditions of the Rumiantsev theorem will be satisfied (see [43, Theorem 3.1 in 

the presence of an infinitely small bound in the stabilized variables of the function V ) 
if the higher terms do not violate the sip-definitene~of the basic quadratic form a,. 

Passing to independent variables by virtue of (2.16), we have for Q 

Q = a,* (qr, Qz, 0, $1 + %* (41, Qs, 0, $1 + (2.24) 

Here sZ,* is a p~itive-definite quadratic form obtained from (2.8), (2.18). (2.20), 
and a,* denotes the terms higher than the second order of smallness which do not in- 
fluence the sign of !& f is an alternating quadratic form of variable sign in ql, qz, 8, 
$ with coefficients containing the factor qs. Tire function Q in (2.24) is positive-defi- 

nite in the variables Qr, (1a, 8, $ if the mentioned coefficients are arbitrarily small 

[S-J. This latter evidently holds if the motion (2.4) is Liapunov-stable relative to Qa. 
Thus, the control (2.21). (2,11)- (2.13) assures optimal stabilization (in the sense of a 
minimum of the functional (2.5), (2.24)) of the rotational gyrostat motion (1.5), (2.4) 
in the phase coordinates ql, q2, 0, $ since this rotation is stable in the angular gyro- 
stat velocity q3 around the axis of symmetry OS, in the absence of control (the integ- 

ral q3 L= conat holds). 



On stabilization of the rotational motion of a solid with flywheels 591 

REFERENCES 

1. Krasovskii. N. N., Problems of stabilization of controlled motions. In :Malkin, 

I.G., Theory of Stability of Motion, Suppl.4, “Nat&a”, Moscow, 1966. 

2. Krementulo. V. V., Optimal stabilization of rotation of a gyrostat in the New- 

tonian force field. PMM Vol. 34, Np 5, 1970. 

3. Beletskii, V. V., Artificial Satellite Motion Relative to the Center of Mass. 

“Nat&a”, Moscow, 196 5. 
4. Rumiantsev, V. V., On the optimal stabilization of controlled systems. PMM 

Vol34, No3, 1970. 

5. Lur’e, A. I., Analytical Mechanics. Fizmatgiz, Moscow, 1961. 

6. Malkin, I. G., Theory of Stability of Motion. “Nat&a”, Moscow, 1966. 

Translated by M. D, F, 

UDC 531.8 

STUDY OF THE DYNAMICS OF A SYNCHRONOUS MOTOR BY ASYMPTOTIC METHODS 

PMM Vol. 38. Ng4, 1974, pp. 636-643 
N. A. FUFAEV and R, A. CHESNOKOVA 

(Gor’kii) 

(Received November 11, 1973) 

We investigate the complete system of differential equations describing the dyna- 
mics of a synchronous motor with two windings on the rotor, under the assumption 

that the moment of inertia of the rotor is sufficiently large. We consider two do- 
mains of variation of the variable s defining the rotor slippage. In one of them 
s have finite values, while in the other domain s are small. In the first case we 
ihvestigate the solutions of the complete system of equations periodic in 6, and in 

the second case we study the periodic solutions which embrace the state of equi- 

librium. The conditions of stability of the solutions obtained are given. The sta- 

ble periodic solutions correspond in the first case to the synchronous modes of the 

synchronous motor, and in the second case to the oscillations of the rotor relative 
to the synchronous rate of rotation. 

When the transient processes in a synchronous motor are investigated using the 
complete system of differential equations obtained by Gorev in Cl], the following 

approaches are usually employed : (1) only the equation of the mechanical motion 

of the rotor is considered p- 71; (2) only the electrical equations are considered, 
i. e. the transient processes are considered at a constant angular velocity of rota- 
tion of the rotor ; (3) the complete system of equations is linearized near the stea- 

dy state motion and small oscillations of the system are studied ; (4) the complete 

system of equations is integrated numerically Cl. 81. However, the dynamics ofa 
synchronous motor as such, has not been investigated to any great extent. 

1. The equation, of dynamic8 and statament of the problem. 
The equations of dynamics of a synchronous motor working in parallel with a network 
of infinite power, in the driving mode, assume the following form [l] after introducing 


